\qquad

Sl. No. of Ques. Paper	$: \mathbf{6 5 0 2}$
Unique Paper Code	$: \mathbf{1 2 2 7 1 1 0 2}$
Name of Paper	$:$ Mathematical Methods for Economics - I
Name of Course	: B.A. (Hons.) Economics
Semester	$: \mathbf{I}$
Duration	$\mathbf{: 3}$ hours
Maximum Marks	$: \mathbf{7 5}$

(Write your Roll No. on the top immediately on receipt of this question paper.) (इस पश्न-पत्र के मिलते हीं ऊपर दिये गये निर्धारित स्थान पर अपना अनुक्रमांक लिखिये।)

Note:-Answers may be written either in English or in Hindi; but the same medium should be used throughout the paper.

टिप्पणी:-इस प्रश्नपत्र का उत्तर अंग्रेज़ी या हिन्दी किसी एक भाषा में दीजिए लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।

> There are six questions in all. All questions are compulsory. A simple calculator can be used.

कुल छः प्रश्न हैं।
सभी प्रश्न अनिवार्य हैं।
साधारण कैलक्यूलेटर का उपयोग किया जा सकता है।
All parts of a question should be answered together.
प्रत्येक प्रश्न के सभी भागों को एक ही स्थान पर हल कीजिए।

1. Answer any two of the following:
(a) Find the solution / solution set for the following:
i. $\quad\left|x^{2}+6 x+16\right|<8$
ii. $\quad \log _{3}(x+6)+\log _{3}(x-2)=2$
(b) Does any of the following drawn on a rectangular coordinate plane represent a function $y=f(x)$? Why or why not?
i. $\quad y^{2}=3 x$
ii. $\quad y=\frac{1}{|x|}$
iii. a vertical straight line

Substantiate your answer with the help of a graph in each case.
(c) For each of the following propositions P and Q , state whether P is a necessary condition, or a sufficient condition, or both necessary and sufficient for Q to be true?
i. P: Ali's vehicle has four wheels.

Q: Ali has a car.
ii. P: The series $\sum_{n=1}^{\infty} a_{n}$ is convergent

Q: $\lim _{n \rightarrow \infty} a_{n}=0$
iii. $\quad \mathrm{P}: x=(-8)^{1 / 3}, \quad x \in \mathfrak{R}$
$\mathrm{Q}: x=-2$
iv. \quad : a number n is odd
$\mathrm{Q}: n$ is a prime number strictly greater than 2 .
निम्नलिखित् में से किन्हीं दो के उत्तर दीजिये :
(क) निम्नलिखित् के लिए हल / समुच्चय हल ज्ञात कीजिये:
i. $\quad\left|x^{2}+6 x+16\right|<8$
ii. $\quad \log _{3}(x+6)+\log _{3}(x-2)=2$
(ख) आयताकार समन्वय समतल (rectangular coordinate plane) में बनें निम्नलिखित संबंधों में कौन से
फलन हैं? क्यों या क्यों नहीं ?
i. $\quad y^{2}=3 x$
ii. $\quad y=\frac{1}{|x|}$
iii. एक ऊर्वाधर (vertical) सीधी रेखा

प्रत्येक दशा में अपने उत्तर को रेखाचित्र द्वारा सिद्व कीजिये ।
(ग) निम्नलिखित् में से प्रत्येक के लिये लिखें, यदि प्रस्ताव Q के सत्य होने के लिये प्रस्ताव P एक आवश्यक शर्त है या पर्याप्त शर्त है या दोनों है :
i. P: अली के वाहन के चार पहिये हैं।

Q: अली के पास एक कार है।
ii. . P: श्रेणी $\sum_{n=1}^{\infty} a_{n}$ संसृत है।
$\mathrm{Q}: \lim _{n \rightarrow \infty} a_{n}=0$
iii: $\quad \mathrm{P}: x=(-8)^{1 / 3}, x \in \mathfrak{R}$
$\mathrm{Q}: x=-2$
iv. $\quad \mathrm{P}: n$ एक विषम अंक है।
$\mathrm{Q}: n$, दो से बड़ा एक अभाज्य अंक है।
2. Answer any four of the following:
(a) Draw the graph of $y=\sqrt{x+5}-4$ using the graph of $y=\sqrt{x}$.
(b) Is there a solution to the equation $x^{3}+2 x-2=0$. Is the solution unique?
(c) A function is given as $f(x)=5+e^{-x^{2}}$,
i. Find its domain and range.
ii. Find its horizontal asymptote(s), if any.
(d) Find the integer roots of the following equation:

$$
3 x^{4}-12 x^{3}-x^{2}+4 x=0
$$

(e) Test the following for convergence:
i. The sequence $s_{n}=\frac{n^{2}-1}{n^{2}-n}$
ii. The series $\sum_{n=1}^{\infty}(-1)^{n}(2)^{1 / n}$

निम्नलिखित् में से किन्हीं चार के उत्तर दीजिये :
(क) ग्राफ़ $y=\sqrt{x}$ की सहायता से ग्राफ $y=\sqrt{x+5}-4$ का अनुरेखण कीजिये।
(ख) क्या समीकरण $x^{3}+2 x-2=0$ का समाधान है? क्या समाधान अद्धितीय है?
(ग) फलन $f(x)=5+e^{-x^{2}}$ के लिये:
i. फलन का परास (domain) एवं परिसर (range) ज्ञात कीजिये।
ii. फलन्न के क्षैतिज अनंतस्पर्शी (यदि यह अस्तित्व रखते हैं) ज्ञात कीजिंये।
(घ) समीकरण $3 x^{4}-12 x^{3}-x^{2}+4 x=0$ के पूर्णांक मूलों को ज्ञात कीजिये।
(ङ) अभिसरण (convergence) की जाँच कीजिये:
i. अनुकम $s_{n}=\frac{n^{2}-1}{n^{2}-n}$
ii. श्रेणी $\sum_{n=1}^{\infty}(-1)^{n}(2)^{1 / n}$
3. Answer any three of the following:
(a) Find the following limits:
i. $\lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{6}-x}}{x^{3}+1}$
ii. $\quad \lim _{x \rightarrow 0} \frac{a^{3 x}-a^{2 x}-a^{x}+1}{2 x^{2}}$
(b) The equation of the demand curve is given as:

$$
D(P)=\frac{A}{p^{B}}
$$

where, A and B are positive constants and P is the price.
i. Find the price elasticity of demand.
ii. Find elasticity of $T(P)$ with respect to price where $T(P)=P . D(P)$
(c) The line $2 x-y+1=0$ is tangent to a circle at $(2,5)$. Moreover, the centre of the circle is on the line $x+y=9$. Find the equation of the circle.
(d) Find the linear approximation of the function $f(x)=\sqrt{1-x}$ around $x=0$ and use it to obtain an estimate of $\sqrt{0.95}$. Also find an upper limit for the error of approximation.

निम्नलिखित् मे से किन्हीं तीन के उत्तर दीजिये :
(क) निम्नलिखित् की सीमा ज्ञात कीजिये:
i. $\quad \lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{6}-x}}{x^{3}+1}$
ii. $\quad \lim _{x \rightarrow 0} \frac{a^{3 x}-a^{2 x}-a^{x}+1}{2 x^{2}}$
(ख) माँग फलन $D(P)=\frac{A}{p^{B}}$ से दिया गया है, जहाँ A एवं B धनात्मक स्थिरांक हैं तथा p कीमत है।
i. माँग की कीमत लोच ज्ञात कीजिये।
ii. कीमत के सापेक्ष, $T(P)$ की कीमत लोच ज्ञात कीजिये जहाँ $T(P)=P . D(P)$
(ग) एक रेखा $2 x-y+1=0$ एक वृत्त को बिंदु $(2,5)$ पर स्पर्श करती है। इसके अतिरिक्त वृत्त का केन्द्र, रेखा $x+y=9$ पर है। वृत्त का संमीकरण ज्ञात कीजिये।
(घ) फलन $f(x)=\sqrt{1-x}$ का $x=0$ के आसपास रेखीय सन्निकटन ज्ञात कीजिये। इसका प्रयोग करते हुए $\sqrt{0.95}$ का अनुमानित मूल्य ज्ञात कीजिये। सन्निकटन की त्रुटि की एक ऊपरी सीमा भी ज्ञात कीजिये।
4. Answer any three of the following:

$$
3 \times 5=15
$$

(a) Find all asymptotes for:

$$
\text { i. } \quad y=\frac{x^{3}+5}{x^{2}}
$$

$$
\text { ii. } \quad y=x e^{-2 x}
$$

(b) Do the following functions defined by y have an inverse? Why or why not? If yes, find $\frac{d x}{d y}$:
i. $\quad y=-x^{6}+5 ; \quad x>0$
ii. $y=4 x^{5}+x^{3}+3 x$
(c) Find the intervals where $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$ is increasing or decreasing.
(d) Calculate the present value of each cash flow using a discount rate of 7% per annum. Which one do you prefer?
Cash flow A: receive Rs. 12 every year, forever, starting today.
Cash flow B: receive Rs. 50 every year for five years, with the first payment being next year.
निम्नलिखित् मे से किन्हीं तीन के उत्तर दीजिये :

$$
3 \times 5=15
$$

(क) निम्नलिखित् की सभी अनन्तस्पर्शी (asymptotes) ज्ञात कीजिये:
i. $\quad y=\frac{x^{3}+5}{x^{2}}$
ii. $\quad y=x e^{-2 x}$
(ख) क्या निम्नलिखित् फलनों का (जो y से परिभषित हैं) प्रतिलोम फलन है ? क्यों या क्यों नहीं ?यदि हाँ, तो $\frac{d x}{d y}$ ज्ञात कीजिये:
i. $\quad y=-x^{6}+5 ; \quad x>0$
ii. $y=4 x^{5}+x^{3}+3 x$
(ग) अंतराल ज्ञात कीजिये जहाँ फलन $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$ बढ़ता है या घटता हैं।
(घ) डिस्काउंट दर 7% प्रति वर्ष का प्रयोग करते हुए, प्रत्येक नकदी प्रवाह के वर्तमान मूल्य की गणना कीजिये। निम्नलिखित मे सें आप किसे अधिक पसंद करोगे?

नकदी प्रवांह A : आज से शुरु होते हुए, Rs. 12 हर साल, हमेशा के लिये प्राप्त करते हैं

नकदी प्रवाह B: Rs. 50 हर साल, पाँच साल के लिये प्राप्त करते हैं, जिसमें प्रथम भुगतान अगले वर्ष किया जाएगा।
5. Answer any three of the following:
(a) Given the function $f(x)=\frac{1}{x(1-x)}$, what can you say about the existence of extreme point(s) in the interval [2,3]? Classify the extreme point(s) as local and/or global.
(b) Find the interval(s) where the function defined by $y=(x-3)^{\frac{2}{3}}$ is concave/ convex. Use this information to find possible point(s) of inflection. Also identify possible cusp(s) in the function. Substantiate your answer with a graph.
(c) A news item is spread by word of mouth to a potential audience of 10,000 people.

After t days, $f(t)=\frac{10000}{1+50 e^{-0.4 t}}$ people will have heard the news.
i. How many people knew about the news at $t=0$?
ii. When will the news spread at the greatest rate? (There is no need to check for the sufficient condition here. (Note: $\ln (50) \cong 4)$)
iii. Show that $f^{\prime}(t)=0.4 f(t)\left[1-\frac{f(t)}{10,000}\right]$. Use this formula to calculate $f^{\prime}(t)$ when $f(t)=5000$.
(d) i. If the function $g(x)$ has a minimum at $x=x_{0}$, show that $f(g(x))$ also has a minimum at x_{0} where $f^{\prime}(g(x))>0$.
ii. Find a point on the curve $y=\sqrt{x}$ that is closest to the point $(2,0)$.

निम्नलिखित् मे से किन्हीं तीन के उत्तर दीजिये :
(क) अंतराल $[2,3]$ पर फलन $f(x)=\frac{1}{x(1-x)}$ के चरम बिंदुओं के अस्तित्व के विषय में आप क्या कह सकते हैं? चरम बिंदुओं को वैश्विक/स्थानीय रुप में वर्गीकृत कीजिये।
(ख) वे अंतराल ज्ञात कीजिये जहाँ फलन $y=(x-3)^{\frac{2}{3}}$ अवतल है और जहाँ यह फलन उत्तल है। यह जानकारी का उपयोग करते हुए संभव नति परिवर्तन बिंदु ज्ञात कीजिये। फलन में संभव कस्प भी ज्ञात कीजिये और फलन का रेखाचित्र बनाएँ। एक ग्राफ के द्वारा अपने उत्तर की पुष्टि कींजिये।
(ग) एक समाचार एक अफ़वाह के द्वारा 10,000 लोगों के एक संभावित श्रोतागण तक फैला हुआ है। t दिनों के बाद $f(t)=\frac{10000 \text {, }}{1+50 e^{-0.4 t}}$ ने यह समाचार सुना होगा।
i. $t=0$ पर कितने लोग इस समाचार के बारे में जानते थे ?
ii. कब यह समाचार सबसे बड़े दर पर फैल जायेगा ? (यहाँ पर्याप्त शर्त की जाँच करने की आवश्यकता नहीं है। (नोट कीजियें $\ln (50) \cong 4)$)
iii. दर्शाइये कि $f^{\prime}(t)=0.4 f(t)\left[1-\frac{f(t)}{10,000}\right]$. इस तथ्य के उपयोग से $f^{\prime}(t)$ की गणना करें जब $f(t)=5000$ है।
(घ) i. यदि फलन $g(x)$ का न्यूनतम् $x=x_{0}$ पर है, तो दर्शाएँ कि फलन $f(g(x))$ का भी न्यूनतम् x_{0} पर है, जहाँ $f^{\prime}(g(x))>0$ है।
ii. वक $y=\sqrt{x}$ पर एक बिंदु ज्ञात कीजिये जो बिंदु $(2,0)$ के सबसे समीप है।
6. Answer all the questions:
(a) Sketch the region bounded by $y=x$ and $y=x^{3}$. Find the area of the region.

$$
O R
$$

Evaluate the definite integral $\int_{0}^{4} f(x) d x$, where

$$
f(x)=\left\{\begin{array}{rrr}
x^{2}+2 x+3, & 0 \leq x \leq 1 \\
\sqrt{4 x}, & 1<x \leq 4
\end{array}\right.
$$

(b) Find the solution(s) of the following difference equation and determine whether the time path oscillatory/ non-oscillatory and convergent/ divergent:

$$
y_{t}+\frac{1}{4} y_{t-1}=5 \quad \text { where } y_{0}=2
$$

OR
Suppose the demand and supply functions in the market for carrots are, respectively, given by:

$$
\begin{aligned}
& Q_{d t}=18-3 P_{t} \\
& Q_{s t}=-3+4 P_{t-1}
\end{aligned}
$$

where $Q_{d t}$ and $Q_{s t}$ represent the quantity demanded and quantity supplied of carrots at time t, and P_{t} represents the price in time period t.
Find the expression for P_{t}. price in time period t) in terms of P_{t-1} (price in time period $t-1$) in equilibrium. Solve the corresponding difference equation. Is the time path of price is oscillatory/ non-oscillatory and convergent/divergent.

निम्नलिखित् सभी के उत्तर दीजिये :
(क) $y=x$ एवं $y=x^{3}$ से घिरे क्षेत्र का रेखाचित्र बनायें। क्षेत्र के अंतर्गत क्षेत्रफल ज्ञात कीजिये। अथवा

निश्चित समाकलन $\int_{0}^{4} f(x) d x$ का मूल्यांकन कीजिये, जहाँ :

$$
f(x)=\left\{\begin{array}{cc}
x^{2}+2 x+3, & 0 \leq x \leq 1 \\
\sqrt{4 x}, & 1<x \leq 4
\end{array}\right.
$$

(ख) निम्नलिखित् अंतर समीकरण के हल ज्ञात कीजिये एवं निर्धारित कीजिये कि समयपथ दोलनकारी/ अदोलनकारी है या संसृत/ असंसृत है:

$$
y_{t}+\frac{1}{4} y_{t-1}=5 \text { जहाँ } y_{0}=2
$$

अथवा
मान लीजिये कि बाज़ार में गाजर के लिये मांग एवं आपूर्ति फलन कमशः निम्नलिखित् दी गई हैं:

$$
\begin{aligned}
Q_{d t} & =18-3 P_{t} \\
Q_{s t} & =-3+4 P_{t-1}
\end{aligned}
$$

जहाँ $Q_{d t}$ तथा $Q_{s t}$ समय t पर कमशः गाजर की माँग की मात्रा तथा आपूर्ति मात्रा को दर्शाते हैं तथां P_{t} समय t पर गाजर की कीमत है। संतुलन में समय t की कीमत, P_{t}, को समय $t-1$ की कीमत, P_{t-1}, के रुप में. अभिव्यक्त क़ीजिये। इससे संबंधित अंतर समीकरण का हल ज्ञात कीजिये। क्या कीमत का समय पथ दोलनकारी/ अंदोलनकारी है या संसृत/ असंसृत है ?
[This question paper contains 12 printed pages.]

| Sr. No. of Question Paper | $: 7918 \quad$ GC Your Roll No................ |
| :--- | :--- | :--- |
| Unique Paper Code | $: 12271102$ |
| Name of the Paper | $:$ Mathematical Methods for Economics - I |
| Name of the Course | $:$ B.A. (Hons.) Economics |
| Semester | $: \mathrm{I}$ |
| Duration : 3 Hours | |

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.
2. There are six questions in all.
3. All questions are compulsory.
4. Use of simple calculator is allowed.
5. All parts of a question should be answered together.
6. Answers may be written either in English or in Hindi; but the same medium should be used throughout the paper.

छात्रों के लिए निर्देश

1. इस प्रश्न-पत्र के मिलते ही ऊपर दिए गए निर्धारित स्थान पर अपना अनुक्रमांक लिखिए।
2. कुल छ: प्रश्न हैं।
3. सभी प्रश्न अनिवार्य हैं।
4. साधारण कैलक्यूलेटर का उपयोग किया जा सकता है।
5. प्रत्येक प्रश्न के सभी भागों को एक ही स्थान पर हल कीजिए।
6. इस प्रश्न-पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में दीजिए, लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।
7. Answer any two of the following :
(a) (i) Solve for y when

$$
\frac{\frac{1}{y}-1}{\frac{1}{y}+1} \geq 1
$$

(ii) Find the domain and range of the function $f(x)=\frac{|x-1|}{(x-1)^{2}}$.
(b) (i) Is $x<-3$ a necessary condition for $x(x+4)>0$?
(ii) Given sets A, B, C, prove or disprove :
$A \backslash(B \backslash C)=(A \backslash B) \backslash C$
(c) (i) Is the function $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $\mathrm{f}(\mathrm{x})=(\mathrm{x}-2)^{2}+3$ one-to-one? Why or why not? Find the range of the function.
(ii) For what values of x does the equation $|y|=x$ define y as a function of x ? Graph the relation $|y|=x$.

निम्नलिखित में से किन्हीं दो के उत्तर दीजिए :

(क) (i) y के लिए हल कीजिए यदि

$$
\frac{\frac{1}{y}-1}{\frac{1}{y}+1} \geq 1
$$

(ii) फलन $\mathrm{f}(\mathrm{x})=\frac{|\mathrm{x}-1|}{(\mathrm{x}-1)^{2}}$ का परास (domain) व परिसर (range) ज्ञात कीजिए ।
(ख) (i) क्या $\mathrm{x}<-3, \mathrm{x}(\mathrm{x}+4)>0$ हेतु एक आवश्यक शर्त है ?
(ii) दिए गए तीन समुच्चयों $\mathrm{A}, \mathrm{B}, \mathrm{C}$, हेतु निम्नलिखित को सिद्ध कीजिए या गलत सिद्ध कीजिए :

$$
A \backslash(B \backslash C)=(A \backslash B) \backslash C
$$

(ग) (i) क्या $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ में $\mathrm{f}(\mathrm{x})=(\mathrm{x}-2)^{2}+3$ द्वारा परिभाषित फलन एक-से-एक (one-to-one) है ? क्यों या क्यों नहीं ? इस फलन का परास ज्ञात कीजिए।
(ii) x के किन मानों हेतु समीकरण $|y|=x, y$ को x के एक फलन के रूप में परिभाषित करता है ? सम्बन्ध $|y|=x$ का आरेख बनाइए।
2. Answer any four of the following :
(a) Compute the following limits:
(i) $\lim _{x \rightarrow \infty}\left(\log _{e} x\right)^{1 / x}$
(ii) $\lim _{x \rightarrow \infty} \frac{\log _{5} x}{\log _{2}(x-8)}$
(b) (i) Suppose f and g are differentiable functions of x. Express $E l_{x} f(g(x))$ in terms of $\mathrm{El}_{\mathrm{u}} \mathrm{f}(\mathrm{u})$ and $\mathrm{El}_{\mathrm{x}}(\mathrm{u})$ (where $\mathrm{u}=\mathrm{g}(\mathrm{x})$ and El denotes Elasticity).
(ii) Does the series $\sum_{n=1}^{\infty}\left(2+\frac{3}{n}\right)^{n}$ converge? Why or why not?
(c) Use the fact that $\frac{d}{d x}\left(3 x^{4}+x^{2}-4 x\right)=12 x^{3}+2 x-4$ to show that the equation $12 x^{3}+2 x-4=0$ has at least one solution in the interval $(0,1)$:
(d) (i) Find the linear approximation to $f(x)=x^{3 / 2}+2 \sqrt{x}$. Use it to approximate the value of $f(16.01)$, when the approximation is done around $\mathrm{x}=16$.
(ii) Find $\frac{d y}{d x}$ if $y=f(g(x))$, given $f^{\prime}(x)=\sqrt{3 x+4}$ and $g(x)=x^{2}-1$.
(e) If $f(x)=\frac{(x-1)}{(x+1)}$ prove that $f(x)$ has an inverse function. If $g(x)$ is the inverse of $f(x)$, compute $g^{\prime}\left(\frac{1}{3}\right)$.

निम्नलिखित में से किन्हीं चार के उत्तर दीजिए :

(क) निम्नलिखित सीमाओं को ज्ञात कीजिए :
(i) $\lim _{x \rightarrow \infty}\left(\log _{e} x\right)^{1 / x}$
(ii) $\lim _{x \rightarrow \infty} \frac{\log _{5} x}{\log _{2}(x-8)}$
(ख) (i) मान लीजिए f व g, x के अवकलनीय फलन हैं। $E l_{x} f(g(x))$ को $E l_{u} f(u)$ व $\mathrm{El}_{\mathrm{x}}(\mathrm{u})$ के पदों में व्यक्त कीजिए (जहाँ $\mathrm{u}=\mathrm{g}(\mathrm{x})$ तथा El लोच को निरूपित करता है)।
(ii) क्या भृंखला $\sum_{\mathrm{n}=1}^{\infty}\left(2+\frac{3}{\mathrm{n}}\right)^{\mathrm{n}}$ अभिसारित (converge) होती है ? क्यों या क्यों नहीं ?
(ग) कथन $\frac{\mathrm{d}}{\mathrm{dx}}\left(3 \mathrm{x}^{4}+\mathrm{x}^{2}-4 \mathrm{x}\right)=12 \mathrm{x}^{3}+2 \mathrm{x}-4$ to की सहायता से दर्शाइए कि समीकरण $12 \mathrm{x}^{3}+2 \mathrm{x}-4=0$ का अन्तराल $(0,1)$ में कम-से-कम एक हल है।
(घ) (i) $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3 / 2}+2 \sqrt{\mathrm{x}}$. का रेखीय सन्निकटन ज्ञात कीजिए। इसकी सहायता से $\mathrm{f}(16.01)$ का सन्निकट मान ज्ञात कीजिए, जहाँ सन्निकटन $\mathrm{x}=16$ के आस-पास किया गया है।
(ii) यदि $\mathrm{y}=\mathrm{f}(\mathrm{g}(\mathrm{x})), \mathrm{f}^{\prime}(\mathrm{x})=\sqrt{3 \mathrm{x}+4}$ तथा $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}-1$ तो $\frac{\mathrm{dy}}{\mathrm{dx}}$ ज्ञात कीजिए ।
(ङ) यदि $\mathrm{f}(\mathrm{x})=\frac{(\mathrm{x}-1)}{(\mathrm{x}+1)}$ तो सिद्ध कीजिए कि $\mathrm{f}(\mathrm{x})$ का प्रतिलोम फलन (inverse function) विद्यमान है । यदि $\mathrm{g}(\mathrm{x}), \mathrm{f}(\mathrm{x})$ का प्रतिलोम फलन है तो $\mathrm{g}^{\prime}\left(\frac{1}{3}\right)$ की गणना कीजिए ।
3. Answer any three of the following :
(a) Graph the function:

$$
f(x)= \begin{cases}x^{2 / 3} & x \leq 1 \\ x+1 & x>1\end{cases}
$$

Find the point(s) of discontinuity. Comment on the nature of discontinuity.
(b) Find vertical and horizontal asymptotes, if any, for the following functions :
(i) $f(x)=x 2^{-x}$
(ii) $f(x)=\frac{x^{2}+2 x-3}{x^{2}-3 x+2}$
(c) Show that $f(x)=20 x-e^{-4 x}$ has exactly one root.
(d) Show, using implicit differentiation that any tangent line at a point P to a circle with centre $O(0,0)$ is perpendicular to radius $O P$.

निम्नलिखित में से किन्हीं तीन के उत्तर दीजिए :
(क) निम्नलिखित फलन का आरेख बनाइए :

$$
f(x)= \begin{cases}x^{2 / 3} & x \leq 1 \\ x+1 & x>1\end{cases}
$$

असंतता (discontinuity) के बिन्दु ज्ञात कीजिए। असंतता की प्रकृति पर टिप्पणी कीजिए।
(ख) निम्नलिखित फलनों के ऊर्ध्वाधर (vertical) व क्षैतिज (horizontal) अनन्तस्पर्शियाँ (asymptotes) ज्ञात कीजिए, यदि कोई हैं:
(i) $f(x)=x 2^{-x}$
(ii) $f(x)=\frac{x^{2}+2 x-3}{x^{2}-3 x+2}$
(ग) दर्शाइए कि $f(x)=20 x-e^{-4 x}$ का ठीक एक मूल है।
(घ) परोक्ष अवकलन (implicit differentiation) की सहायता से दर्शाइए कि केन्द्र $O(0,0)$ वाले एक वृत्त के किसी बिन्दु P पर स्पर्श रेखा, त्रिज्या (radius) OP के लम्बवत् होती है।
4. Answer any three of the following : ... $(3 \times 5=15)$
(a) A psychologist measures a child's capability to learn and remember by the function :

$$
L(t)=\frac{\ln (t+1)}{t+1}
$$

where t is the child's age in years, for $0 \leq t \leq 5$.
(i) At what age does a child have the greatest learning capability?
(ii) Find the proportionate rate of growth of $L(t)$.
(iii) Is the proportionate rate of growth of $L(t)$ positive for $0 \leq t \leq 5$?
(b) Suppose that a project has an immediate cost of Rs. 10 crores. It involves running costs of Rs. 1 crore per year in perpetuity, beginning at the end of a one-year construction period. At the end of this year, annual gross revenue from the project of Rs. 1.5 crores per year is generated in perpetuity.
(i) Is the project profitable if the interest rate is 8% per year?
(ii) For what range of (non-negative) interest rates is the net present value positive?
(c) Consider the function defined for all $x \in \mathbb{R}$ by $f(x)=e^{x+1}-x$.
(i) Determine the sign of $f^{\prime}(x)$.
(ii) Show that $f(x)>0$ for all $x \in \mathbb{R}$.
(iii) Draw the graph of $f(x)$ and show that $f(x)-2$ has exactly one solution.
(d) Find constants A, B, C and D such that the graph of

$$
f(x)=3 x^{4}+A x^{3}+B x^{2}+C x+D
$$

will have horizontal tangents at $(2,-3)$ and $(0,7)$.

निम्नलिखित में से किन्हीं तीन के उत्तर दीजिए:
(क) एक मनोवैज्ञानिक किसी बच्चे की सीखने व याद रखने की क्षमता को निम्नलिखित फलन द्वारा मापता है:

$$
L(t)=\frac{\ln (t+1)}{t+1}
$$

जहाँ t, बच्चे की आयु है (वर्षों में), व $0 \leq t \leq 5$.
(i) बच्चे की सीखने की क्षमता अधिकतम किस आयु में होती है ?
(ii) $\mathrm{L}(\mathrm{t})$ की आनुपातिक वृद्धि दर (proportionate rate of growth) ज्ञात कीजिए।
(iii) क्या $\mathrm{L}(\mathrm{t})$ की आनुपातिक वृद्धि दर $0 \leq \mathrm{t} \leq 5$ हेतु धनात्मक है ?
(ख) मान लीजिए कि एक परियोजना की तत्काल लागत (immediate cost) 10 करोड़ रु. है। इसमें प्रचालन लागत (running costs) प्रतिवर्ष 1 करोड़ रु. है जो कि निर्माण-अवधि (एक वर्ष) के अन्त्त से प्रारम्भ होकर हर वर्ष लगती रहेगी। इसी वर्ष के अन्त्त से

प्रारम्भ होकर परियोजना से 1.5 करोड़ रु. का वार्षिक घरेलू राजस्व, हर वर्ष जनित होता रहेगा।
(i) यदि ब्याज दर 8% है तो क्या परियोजना लाभदायक है ?
(ii) ब्याज दर के मानों के किस अन्तराल (अæ्ठणात्मक) हेतु निवल वर्तमान मान (net present value) धनात्मक होगा ?
(ग) सभी $\mathrm{x} \in \mathbb{R}$ हेतु $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}+1}-\mathrm{x}$ द्वारा परिभाषित फलन पर विचार कीजिए।
(i) $\mathrm{f}^{\prime}(\mathrm{x})$ का चिह निर्धारित कीजिए।
(ii) दर्शाइए कि सभी $\mathrm{x} \in \mathbb{R}$ हेतु $\mathrm{f}(\mathrm{x})>0$ है।
(iii) $\mathrm{f}(\mathrm{x})$ का आरेख बनाइए व दर्शाइए कि $\mathrm{f}(\mathrm{x})-2$ का ठीक एक हल है।
(घ) ऐसे स्थिरांकों $\mathrm{A}, \mathrm{B}, \mathrm{C}$ एवं D के मान ज्ञात कीजिए कि फलन

$$
f(x)=3 x^{4}+A x^{3}+B x^{2}+C x+D
$$

के वक्र का $(2,-3)$ एवं $(0,7)$ पर क्षैतिज स्पर्श रेखाएं (horizontal tangents) हों।
5. Answer any three of the following :
(a) If $f(x)=x^{2 / 3}(6-x)^{1 / 3}$, find the intervals in which the function is increasing and/or decreasing.
(b) A single input, x, is used to produce output y and the production function is $y=x^{1 / 3}, x>0$. The cost function $C(y)=10 g(y)$, where $x=g(y)$ is the inverse of the production function. Show that the production function is strictly concave and the cost function is strictly convex.
(c) For what values of c does the polynomial $P(x)=x^{4}+c x^{3}+x^{2}$ have :
(i) Two inflection points?
(ii) No inflection point?

In case'(i), does the curve change from concave to convex or convex to concave?
(d) Given the function $f(x)=\left(x^{2}+x\right)^{2 / 3}$, do global extreme points exist in $[-2,3]$. If yes, find them.

निम्नलिखित में से किन्हीं तीन के उत्तर दीजिए:
(क) यदि $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2 / 3}(6-\mathrm{x})^{1 / 3}$, तो वे अन्तराल ज्ञात कीजिए जिनमें यह फलन वर्द्धमान तथा/या हासमान है।
(ख) एक आगत (input) x का उपयोग उत्पाद y को बनाने हेतु किया जाता है तथा उत्पादन फलन $\mathrm{y}=\mathrm{x}^{1 / 3}$ है $\mathrm{x}>0$. लागत फलन $\mathrm{C}(\mathrm{y})=10 \mathrm{~g}(\mathrm{y})$ है, जहाँ $\mathrm{x}=\mathrm{g}(\mathrm{y})$ उत्पादन फलन का प्रतिलोम फलन है। दर्शाइए कि उत्पादन फलन सर्तत: अवतल है (strictly concave) तथा लागत फलन सर्तत: उत्तल (strictly convex) है।
(ग) c के किस मान हेतु बहुपद $\mathrm{P}(\mathrm{x})=\mathrm{x}^{4}+\mathrm{cx}^{3}+\mathrm{x}^{2}$ के
(i) दो गोड़ बिन्दु होंगे ?
(ii) कोई मोड़ बिन्दु नहीं होगा ?

स्थिति (i) में बताइए कि वक्र अवतल से उत्तल होता है या उत्तल से अवतल ?
(घ) फलन $\mathrm{f}(\mathrm{x})=\left(\mathrm{x}^{2}+\mathrm{x}\right)^{2 / 3}$ के वैश्विक चरम बिन्दु क्या $[-2,3]$ में विद्यमान हैं ? यदि हाँ तो उन्हें ज्ञात कीजिए।
6. Answer all the questions :
(a) Find the common area between $x \leq 3-y^{2}$ and $x \geq-1$.
OR

A function F is defined for all $\mathrm{T}>0$ as follows:

$$
F(T)=\frac{K}{T} \int_{0}^{T} e^{-a x} d x
$$

Evaluate the integral and prove that $\mathrm{F}(\mathrm{T})$ takes values in the interval ($0, \mathrm{~K}$).
(b) A bank account gives an annual interest rate of 5% compounded monthly. If you invest Rs. 1000 initially and add Rs. 10 every month, write a difference equation which describes how the amount changes from month to month. The amount after n months is denoted by q_{n}. Solve the difference equation and comment on the time path. Is it convergent/divergent and oscillatory/ non-oscillatory?

OR

The population of an island is currently 50,000 . It is declining at 1% per annum. However, there is net immigration of 5,000 persons each year. Write the difference equation for the population after t years and solve it. Find the steady state equilibrium and depict how the solution converges to/diverges away from the equilibrium state.

सभी प्रश्नों के उत्तर दीजिए :
(क) वक्रों $\mathrm{x} \leq 3-\mathrm{y}^{2}$ व $\mathrm{x} \geq-1$ के मध्य (common) क्षेत्र ज्ञात कीजिए।

अथवा

एक फलन F को सभी $T>0$ हेतु निम्न प्रकार परिभाषित किया जाता है:

$$
F(T)=\frac{K}{T} \int_{0}^{T} e^{-\alpha x} d x
$$

इस समाकलन का मान ज्ञात कीजिए व सिद्ध कीजिए कि $\mathrm{F}(\mathrm{T})$ के मान अन्तराल ($0, \mathrm{~K}$) में हैं।
(ख) एक बैंक खाता 5% वार्षिक की ब्याज दर देता है जिसे मासिक चक्रवृद्धि आधार पर जजोड़ा जाता है। यदि आप प्रारम्भ में 1000 रु. का निवेश करें व तत्पश्चात् 10 रु. प्रति माह जोड़ें, तो इस राशि में महीन-दर-महीने परिवर्तन को दर्शाने वाला अन्तर समीकरण लिखिए। n महीने के बाद राशि को q_{n} से दर्शाया जाता है। इस अन्तर समीकरण को हल कीजिए व समय पथ पर टिप्पणी कीजिए। यह समय-पथ अभिसारी या अपसारी तथा दोलनशील है या अदोलनशील ?

अथवा

एक द्वीप की जनसंख्या अभी 50,000 है। यह प्रतिवर्ष 1% की दर से कम हो रही है। परन्तु प्रतिवर्ष 5,000 व्यक्तियों का निवल immigration हो रहा है। t वर्षों के बाद जनसंख्या हेतु अन्तर समीकरण लिखिए तथा इसे हल कीजिए। स्थायी अवस्था साम्यावस्था ज्ञात कीजिए व दर्शाइए कि किस प्रकार यह हल साम्यावस्था की ओर अभिसरित होता है/ साम्यावस्था से दूर अपसारित होता है।

This question paper contains 8 printed pages.
Your Roll No.

Sl. No. of Ques. Paper: 2597	
Unique Paper Code	$: 12271102$
Name of Paper	: Mathematical Methods for
	Economics - I
Name of Course	: CBCS (Part I)
Semester	$:$ I
Duration	:3 hours
Maximum Marks	$: 75$

(Write your Roll No. on the top immediately on receipt of this question paper.)
(इस मश्नपत्र के मिलते ही ऊपर दिये गये निर्थारित स्थान पर अपना अनुक्रमांक लिखिये।

NoTE:- Answers may be written in Hindi or in English; but the same medium should be used throughout the paper.
टिप्पणी:- इस प्रश्नपत्र का उत्तर हिन्दी या अंग्रेज़ी किसी एक भाषा में दीजिए लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।

There are six questions in all. All questions are compulsory. A simple calculator can be used.

प्रश्नपत्र में कुल छः प्रश्न हैं। सभी प्रश्न अनिवार्य हैं। साधारण कैलक्यूलेटर का उपयोग किया जा सकता है।

(b) Show graphically the region represented by the set:
uonpapu! jo дulod e si $0=x: g$
(iv) A: $f^{\prime \prime}(c)=0$

(iii) A: x, y, and z are three different points on a plane. $\forall-=x: g$
(ii) $\mathrm{A}: x=(-64)^{1 / 3}, x \in \Re$

(i) A: Two numbers x and y are even.
a sufficient condition, or both necessary and sufficient for B to be true:
(a) For each of the following propositions A and B, state if A is a necessary condition, or

$L=\varsigma \mathcal{\Sigma} \times \tau$
N
$L=S^{\prime} \mathcal{L} \times$

$x_{\varepsilon-} \partial x=K(!!)$ (i) $y=\frac{x^{3}+5}{1-x^{2}}$ (d) Find all asymptotes for: the point of intersection of $g(x)$ with $h(x)$

 both $f(x)$ and $g(x)$. Also determine the domain and range for both functions.

 (a) Given the function $f(x)=x^{7}-x^{5}-x^{4}+2 x+1$, prove that the graph of f has a 3. Answer any three of the following:

 (ङ) अभिसरण (convergence) की जाँच कीजिये:

के आरेख में बनायें।

 1810×4 (ख) $y^{\prime \prime}$ ज्ञात कीजिए यदि समीकरण $x^{1 / 2}+y^{1 / 2}=1, y$ को x के एक अंतर्निहित फलन के रुप में परिभाषित $\frac{|\tau-x|}{\tau-z^{x}} \cdot \frac{\tau-x}{\Psi!!}(!!)$
4 $3 \times 5=15$
$\stackrel{\rightharpoonup}{u}$,

1
4
(i)
(ii)

Find the proportional rate of growth of the revenue received $W(t)$. and that the interest rate is 100% per annum compounded continuously $\cdot(0<V))_{3}{ }^{\partial} V=(\eta) M$ from now, the revenue received would be: hotel should wait 25 years. Both agree, however, that if the painting is sold t years
 (b) Two managers A and B of a hotel have disagreed about the sale of a rare painting.

 5. Answer any three of the following:

$\left.\begin{array}{cc}\tau<x & \prime z^{x y} \\ I>x & \imath-x\end{array}\right\}=(x) f$
 $x=1 / 2$ इसका नति परिवर्तन बिंदु हो। (ग) संख्या a एवं b ज्ञात कीजिये जिससे फलन $f(x)=a x^{3}+b x^{2}$ का रेखाचित्र बिंदु $(-1,1)$ से गुज़रे तथा (ख) दर्शाएं कि फलन $f(x)=x^{3}+3 x+1$ का एक ही वास्तविक मूल है।
(iii) भाग (ii) से प्राप्त परिणाम पर आधारित, सन्निकटन की त्रुटि की एक ऊपरी सीमा ज्ञात कीजिये। (ii) भाग (i) का प्रयोग करते हुए, $(102)^{1 / 2}$ का अनुमानित मूल्य ज्ञात कीजिये। (i) फलन का द्विधातिय टेलर बहुपद $x=100$ के आसपास ज्ञात कीजिये।

continuous everywhere. Also check differentiability at $x=1$ when $k=k^{\circ}$ $3 \times 5=15$

एक बिंद है जहां $f(x)=0$ है? स्पष्ट कीजिय।

O L•d
(घ) फलन $f(x)=\left\{\begin{array}{ll}x^{2}+1, & -2 \leq x \leq 0 \\ -\left(x^{2}+1\right), & 0<x \leq 2\end{array}\right.$ पर विचार कीजिये। क्या बंद अंतराल $[-2,2]$ पर कोई उत्तल है । यह जानकारी का उपयोग करते हुए संभव नति परिवर्तन बिंदु ज्ञात कीजिये। फलन में संभव कस्प भी
ज्ञात कीजिये और फलन का रेखाचित्र बनाएँ। एक ग्राफ के द्वारा अपने उत्तर की पुष्टि कीजिये। (ग) $y=x^{2 / 3}$ फलन की जाँच कीजिये। वे अंतराल ज्ञात कीजिये जहाँ यह फलन अवतल है और जहाँ यह फलन

 जहाँ थ्याज का सतत चकृृद्धि दर 100% प्रति वर्ष है। $W(t)=A e^{\sqrt{t}}, \quad(A>0)$

बात पर सहमत हैं कि चित्र को यदि t साल के बाद बेच दिया जाता है तो राजस्व निम्नलिखित प्राप्त होगा
A तुरंत ही चित्र बेचने के पक्ष में हैं परंतु प्रबंधक B की राय है कि 25 साल की प्रतीक्षा करे। दोनों लेकिन इस
(ख) एक होटल के दो प्रबंधक A एवं B होटल के एक बहमूल्य चित्र की बिकी के बारे में सहमत नहीं हैं। प्रतंधक

(क) अंतराल $[3,6]$ पर फलन $f(x)=\frac{10 x}{4-x^{2}}$ के चरम बिंदुओं के अस्तित्व के विषय में आप क्या कह सकते हैं?

(d) Consider the function $f(x)= \begin{cases}\left(x^{2}+1\right), & 0<x \leq 2\end{cases}$

Substantiate your answer with a graph. possible point(s) of inflection. Also identify possible cusp(s) in the function. concave and the interval(s) over which it is convex. Use this information to find (c) Examine the function defined by $y=x^{2 / 3}$. Find the interval(s) over which it is Manager A or B ?

If the interest rate is 10% per annum, should the Board of Directors support

This question paper contains $16+3$ printed pages
Roll No.

S. No. of Question Paper

Unique Paper Code
Name of the Paper
Name of the Course
: B.A. (Hons.) Economics
[CBCS C-2, Core]

Semester : I
Duration: $\mathbf{3}$ Hours
Maximum Marks : 75
(Write your Roll No. on the top immediately on receipt of this question paper.)
Note :-
Answers may be written either in English or in Hindi; but the same medium should be used throughout the paper.
टिप्पणी : इस प्रश्न-पत्र का उत्तर अंग्रेज़ी या हिन्दी किसी एक भाषा में दीजिए; लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।

There are six questions in all.
All questions are compulsory.
A simple calculator can be used.
इस प्रश्न-पत्र में कुल छः प्रश्न हैं।
सभी प्रश्न अनिवार्य है।
साधारण कैलकुलेटर का उपयोग किया जा सकता है।
P.T.O.

Answer any two of the following :
(A) Determine the domain and range of the following inequality:

$$
y=f(x)=\ln \left[\ln \left(e^{x}-1\right)\right]<0 .
$$

(B) Find all x such that :

$$
\begin{equation*}
y=|-4-2 x| \geq-2 \tag{i}
\end{equation*}
$$

(ii) $y=\frac{(x-0.5)(\ln (1-x))}{x^{3 / 2}}>0$.
(C) Determine the direction of logical conclusion $(\mathrm{P} \Rightarrow \mathrm{Q}$

$$
\text { or } Q \Rightarrow P \text { or } P \Rightarrow Q \text {) in case of the following }
$$ propositions :

(i) $\mathrm{P}: f(x)$ has a local extremum at $x=a$, where $f^{\prime}(a)$ exists.
$Q: x=a$ is a stationary point of $f(x)$, i.e. $f^{\prime}(a)=0$.
(ii) $\mathrm{P}: x$ satisfies the inequality : $\frac{(x+5)}{(1-x)} \geq 0$
$Q: x$ lies in the open interval from -5 to 1.

निम्नलिखित में से किन्हीं दो के उत्तर दीजिए :

(A) निम्नलिखित असमिका का परास (domain) व परिसर (range) ज्ञात कीजिए :

$$
y=f(x)=\ln \left[\ln \left(e^{x}-1\right)\right]<0 .
$$

(B) x के वे सभी मान ज्ञात कीजिए जिनके लिए :
(i) $y=|-4-2 x| \geq-2$
(ii) $y=\frac{(x-0.5)(\ln (1-x))}{x^{3 / 2}}>0$.
(C) निम्नलिखित कथनों हेतु तार्किक निष्कर्ष (logical conclusion) ($\mathrm{P} \Rightarrow \mathrm{Q}$ or $\mathrm{Q} \Rightarrow \mathrm{P}$ or $\mathrm{P} \Rightarrow \mathrm{Q}$) की दिशा ज्ञात कीजिए :
(i) $\mathrm{P}: x=a$ पर $f(x)$ का एक ऐसा स्थानीय चरम बिन्दु (local extremum) है जहाँ $f^{\prime}(a)$ विद्यमान है।
$\mathrm{Q}: x=a, f(x)$ का एक स्थिर बिन्दु (stationary point) है, अर्थात् $f^{\prime}(a)=0$.
(ii) $\mathrm{P}: x$, असमिका $\frac{(x+5)}{(1-x)} \geq 0$ को सन्तुष्ट करता है।
$\mathrm{Q}: x,-5$ से 1 तक के खुले अन्तराल में स्थित है।
Р.т.О.

Answer any three of the following

(A) Draw in the same graph the regions represented by the following two sets :

$$
\mathrm{S}=\left\{(x, y): x^{2}+y^{2} \leq 25\right\}
$$

$$
\mathrm{T}=\{(x, y): x y \geq 12\}
$$

In each case, plot coordinates of all points where the graphs intersect each other or intersect the coordinate axes. Determine if sets S and T are disjoint.
(B) For the function defined as follows :

$$
f(x)= \begin{cases}2-x, & 0 \leq x<2 \\ \sqrt{x}, & 2 \leq x \leq 4 \\ \frac{x}{4}+1, & x>4\end{cases}
$$

Plot the function. Verify continuity and differentiability of the function at $x=2$ and $x=4$.
(C) Find the asymptotes of the rectangular hyperbola :

$$
y=\frac{(k-2) x+k-4}{(k-6) x+k-3}
$$

given that the asymptotes intersect at a point that lies on the straight line $y=2 x-7$.
(D) Harish runs a 'rent a bicycle' kiosk at the university metro station. He currently charges a price of Rs. 10 per bicycle at which the average demand is of 100 bicycles per day. An industry expert estimates that, each time the rental price increases by Rs. 5 per bicycle, the average demand drops by ten bicycles per day. Express the rental income as a quadratic function and use the method of 'completing the squares' to determine (i) the rental price that maximises your income from renting bicycles and (ii) maximum income.

निम्नलिखित में से किन्हीं तीन के उत्तर दीजिए :

(A) निम्नलिखित दो समुच्चयों के द्वारा निरूपित क्षेत्रों को एक ही चित्र में आरेखित कीजिए :
$\mathrm{S}=\left\{(x, y): x^{2}+y^{2} \leq 25\right\}$
$\mathrm{T}=\{(x, y): x y \geq 12\}$
प्रत्येक स्थिति में उन सभी बिन्दुओं के निर्देशांकों (coordinates) को भी चिह्नित कीजिए जिन पर ये आरेख एक दूसरे को प्रतिच्छेदित (intersect) करते हैं या निर्देशांक अक्षों (coordinate axes) को प्रतिच्छेदित करते हैं। ज्ञात कीजिए कि क्या समुच्चय S व T अलग (disjoint) हैं।
(B) एक फलन जो कि निम्न प्रकार से परिभाषित किया जाता है :

$$
f(x)= \begin{cases}2-x, & 0 \leq x<2 \\ \sqrt{x}, & 2 \leq x \leq 4 \\ \frac{x}{4}+1, & x>4\end{cases}
$$

उसे आरेखित कीजिए। इस फलन की $x=2$ तथा $x=4$ पर संततता (continuity) तथा अवकलनीयता (differentiability) को सत्यापित कीजिए।
(C) आयताकार अतिपरवलय (rectangular hyperbola) :

$$
y=\frac{(k-2) x+k-4}{(k-6) x+k-3}
$$

की अनन्तस्पर्शियाँ (asymptotes) ज्ञात कीजिए, यदि यह दिया हुआ है कि ये अनन्तस्पर्शियाँ सरल $y=2 x-7$ पर स्थित एक बिन्दु पर प्रतिच्छेदित करती हैं।
(D) हरीश, विश्वविद्यालय मेट्रो स्टेशन पर एक 'साइकिल किराए पर लें कियोस्क चलाते हैं। अभी वह प्रति साइकिल 10 रु. लेते हैं जिस पर औसत मांग प्रतिदिन 100 साइकिलों की है। एक उद्योग विशेषज्ञ का आकलन है कि जब

भी किराया 5 रु. बढ़ता है, औसत मांग में 10 साइकिल प्रतिदिन की गिरावट आती है। किराए से होने वाली आय को एक द्विघात फलन (quadratic function) के रूप में व्यक्त कीजिए तथा 'वर्ग पूर्ण करने' की विधि की सहायता से (i) साइकिलों को किराए पर देने से होने वाली आय को अधिकतम करने वाला किराया तथा (ii) अधिकतम आय को ज्ञात कीजिए।
3. Answer any three of the following : $\quad 3 \times 5=15$
(A) A geometric series has its second term $a_{2}=-48$ and fifth term $a_{5}=6$.
(i) Find the first term and common ratio of the series.
(ii) Find the sum to infinity of the series.
(iii) Show that the magnitude of the difference between the sum of first n terms of the series and its sum to infinity is given by 2^{6-n}.
(B) Given the following approximation for small values of x :

$$
(1+a x)^{n} \approx 1-24 x+270 x^{2}
$$

P.T.O.

Where n is an integer greater than 1 :
(i) Find the values of n and a.
(ii) Use the values of n and a and a suitable value of x to obtain an approximate value of $(0.9985)^{16}$.
(C) Evaluate the following limits :
(i) $y=\lim _{x \rightarrow \infty}\left(\frac{x^{5}+1}{5^{x}+x^{4}}\right)$
(ii) $y=\lim _{x \rightarrow-\infty}\left(\frac{\sqrt{n^{2}+6}}{8 n}\right)$.
(D) Suppose in a given city with n individuals, total market demand $\mathrm{X}=\sum_{i=1}^{n} x_{i}$, where x_{i} is the demand of the ith consumer. The inverse demand function is given by $x_{i}=f(\mathrm{P})$, where P is the market price. If half the consumers with 75% share in total demand, have price elasticity of demand $\left|\mathrm{E}_{1}\right|=2$ and the remaining have price elasticity of demand $\left|\mathrm{E}_{2}\right|=1.5$, estimate the price elasticity of demand of all consumers taken together.

निम्नलिखित में से किन्हीं तीन के उत्तर दीजिए :

(A) एक ज्यामितीय श्रृंखला (geometric series) का दूसरा पद $a_{2}=-48$ तथा पाँचवाँ पद $a_{5}=6$ है।
(i) इस श्रृंखला का पहला पद तथा सार्व अनुपात (common ratio) ज्ञात कीजिए।
(ii) इस शृंखला का अनन्त तक योगफल ज्ञात कीजिए।
(iii) दर्शाइए कि इस श्रृंखला के प्रथम n पदों के योगफल तथा अनन्त पदों के योगफल के मध्य अन्तर का

$$
\text { परिमाण } 2^{6-n} \text { है। }
$$

(B) x के छोटे मानों हेतु निम्नलिखित सन्निकटन (approximation) दिया हुआ है :

$$
(1+a x)^{n} \approx 1-24 x+270 x^{2}
$$

जहाँ $n, 1$ से बड़ा एक पूर्णांक (integer) है :
(i) n व a के मान ज्ञात कीजिए।
(ii) n व a के मानों तथा x के एक उपयुक्त मान की सहायता से $(0.9985)^{16}$ का सन्निकट मान (approximate value) ज्ञात कीजिए।
(C) निम्नलिखित सीमाओं के मान ज्ञात कीजिए :
(i)

$$
y=\lim _{x \rightarrow \infty}\left(\frac{x^{5}+1}{5^{x}+x^{4}}\right)
$$

(ii) $y=\lim _{x \rightarrow-\infty}\left(\frac{\sqrt{n^{2}+6}}{8 n}\right)$.
(D) मान लीजिए कि n व्यक्तियों वाले एक शहर में कुल बाजार मांग $\mathrm{X}=\sum_{i=1}^{n} x_{i}$, जहाँ x_{i}, वें उपभोक्ता की मांग है। प्रतिलोम (inverse) मांग फलन $x_{i}=f(\mathrm{P})$ है, जहाँ P बाजार कीमत है। यदि आधे उपभोक्ता जिनका कुल मांग में 75% अंश है, की मांग की कीमत लोच $\left|\mathrm{E}_{1}\right|=2$ है तथा शेष उपभोक्ताओं की मांग की कीमत लोच $\left|\mathrm{E}_{2}\right|=1.5$ है, तो सभी उपभोक्ताओं की मांग की समेकित कीमत लोच (elasticity of demand of all consumers taken together) ज्ञात कीजिए।
4. Answer any three of the following :
(A) Graph the following function and verify that it is one-to-one :

$$
f(x)= \begin{cases}\ln (x) ; & 0<x<1 \\ x-1 ; & x \geq 1\end{cases}
$$

Find the inverse function $f^{-1}(x)$ and identify its domain and range. Draw $f^{-1}(x)$ in the same graph and comment on the nature of symmetry in graphs of $f(x)$ and $f^{-1}(x)$. Plot the coordinates of all points where the graphs intersect the coordinate axes.
(B) The Coconut Farmers' Association in India estimated that the value $\mathrm{V}(t)$ of coconut produce (in lakh rupees) increases over time according to the following function :

$$
\mathrm{V}(t)=a^{\ln \sqrt{b t+c}}
$$

where $a, b, c>0, a>e$ and t is time for coconuts to ripen.

Assuming that the discount rate is r :
(i) Find optimal time t^{*} for the producers to pick coconuts such that the present value of the harvest is maximized (second order condition for optimum need not be verified).
(ii) How does a change in discount rate change the optimal time t^{*} of picking the coconuts ?
(C) Given the function:

$$
f(x)= \begin{cases}\frac{7-(16)^{1 / x}}{1+(16)^{1 / x}} & \text { if } x \neq 0 \\ 7 & \text { if } x=0\end{cases}
$$

Prove that there is a point in the open interval $(2,4)$ in which the function $f(x)$ has a value of 1 .
(D) If the function:

$$
f(x)=a x e^{-b x}, \quad a>0
$$

has a local maximum at point $(2,10)$, then find a and b.
Find the point of inflection of $f(x)$.

निम्नलिखित में से किन्हीं तीन के उत्तर दीजिए :
(A) निम्नलिखित फलन का आरेख बनाइए तथा सत्यापित कीजिए कि यह एक-से-एक (one-to-one) है :

$$
f(x)= \begin{cases}\ln (x) ; & 0<x<1 \\ x-1 ; & x \geq 1\end{cases}
$$

इसका प्रतिलोम (inverse) फलन $f^{-1}(x)$ ज्ञात कीजिए तथा
इसका परास व परिसर ज्ञात कीजिए। $f^{-1}(x)$ को भी उसी

रेखाचित्र में आरेखित कीजिए तथा $f(x)$ के $f^{-1}(x)$ आरेखों

में सममितता (symmetry) की प्रकृति पर टिप्पणी कीजिए।
उन बिन्दुओं के निर्देशांकों को चिह्नित कीजिए जहाँ ये आरेख निर्देशांक अक्षों को प्रतिच्छेदित करते हैं।
(B) भारतीय नारियल कृषक संघ का आकलन है कि नारियल

उत्पाद का मूल्य (लाख रु. में) $V(t)$, समय के साथ
निम्नलिखित फलन के अनुसार बढ़ता है :

$$
\mathrm{V}(t)=a^{\ln \sqrt{b t+c}}
$$

जहाँ $a, b, c>0, a>e$ तथा t नारियलों को पकने में लगने वाला समय है।

यह मानते हुए कि बट्टे की दर (discount rate) r है :
(i) उत्पादकों के द्वारा नारियलों को तोड़ने का वह इष्टतम समय i^{*} ज्ञात कीजिए जिसके लिए उपज का वर्तमान मूल्य (present value) अधिकतम हो (इष्टतमीकरण

हेतु द्वितीय क्रम (second order) की शर्त को सत्यापित करने की आवश्यकता नहीं है)।
(ii) बट्टे की दर में परिवर्तन, नारियलों को तोड़ने के इष्टतम समय i^{*} को किस प्रकार से परिवर्तित करता है ?
(C) फलन :

$$
f(x)= \begin{cases}\frac{7-(16)^{1 / x}}{1+(16)^{1 / x}} & \text { if } x \neq 0 \\ 7 & \text { if } x=0\end{cases}
$$

हेतु सिद्ध कीजिए कि खुले अन्तराल $(2,4)$ में एक ऐसा बिन्दु है जिस पर फलन $f(x)$ का मान 1 है।
(D) यदि फलन :

$$
f(x)=a x e^{-b x}, \quad a>0
$$

का बिन्दु $(2,10)$ पर एक स्थानीय उच्चिष्ठ (local maximum)
है तो a व b के मान ज्ञात कीजिए। $f(x)$ का मोड़ बिन्दु (point of inflection) ज्ञात कीजिए।
5. Answer any two of the following : $2 \times 6=12$
(A) Consider the function $f(x)=2 x^{3}+3 x^{2}-12 x+24$, defined for all $x \in \mathbf{R}$.
(i) Find the stationary point(s) of $y=f(x)$ and determine whether each stationary point is a maximum or minimum point.
(ii) Plot the curve $y=f(x)$ depicting clearly the stationary points and the extreme values attained at these points.
(iii) State the set of values of k for which the equation $f(x)=k$ has three solutions.
(B) Given the function $f(x)=6 x^{4 / 3}-3 x^{1 / 3}$ defined over the interval $[-1,1]$:
(i) Find the global maximum and minimum values of

$$
f(x)
$$

(ii) Find the interval(s) in which the function increases and/or decreases.
(iii) Find the interval(s) in which the function is concave and/or convex.
(C) A function $f(x)$ is known to be continuous and differentiable for all x. Find $f^{\prime}(x)$ where :

$$
f^{\prime}(x)=\frac{d}{d x} \int_{0}^{x}\left[t^{3}(2 t-3)^{2}(t+1)^{5}(t-7)\right] d t .
$$

Find all stationary points of $f(x)$ and classify each as a local maximum, a local minimum, or neither.

निम्नलिखित में से किन्हीं दो के उत्तर दीजिए :

(A) सभी $x \in \mathbf{R}$ हेतु परिभाषित फलन $f(x)=2 x^{3}+3 x^{2}-12 x$,
+24 पर विचार कीजिए :
(i) $y=f(x)$ के स्थिर बिन्दु(ओं) को ज्ञात कीजिए तथा प्रत्येक स्थिर बिन्दु हेतु ज्ञात कीजिए कि वह उच्चिष्ठ (maximum) है या निम्निष्ठ (minimum)।
(ii) सभी स्थिर बिन्दुओं तथा उन पर प्राप्त चरम बिन्दुओं को दर्शाते हुए वक्र $y=f(x)$ को आरेखित कीजिए।
(iii) k के उन मानों का समुच्चय बताइए जिनके लिए समीकरण $f(x)=k$ के तीन हल हैं।
(B) अन्तराल $[-1,1]$ पर परिभाषित फलन $f(x)=6 x^{4 / 3}-3 x^{1 / 3}$ हेतु :
(i) $f(x)$ के वैश्विक (global) अधिकतम व न्यूनतम मान ज्ञात कीजिए।
(ii) उन अन्तरालों को ज्ञात कीजिए जिनमें यह फलन वर्द्ध मान (increasing) है तथा/अथवां ह्रासमान (decreasing) है।
(iii) उन अन्तरालों को ज्ञात कीजिए जिनमें यह फलन अवतल (concave) है तथा/अथवा उत्तल (convex) है।
(C) एक फलन $f(x)$ के बारे में यह ज्ञात है कि यह सभी x हेतु संतत तथा अवकलनीय है। $f^{\prime}(x)$ ज्ञात कीजिए जहाँ :

$$
f^{\prime}(x)=\frac{d}{d x} \int_{0}^{x}\left[t^{3}(2 t-3)^{2}(t+1)^{5}(t-7)\right] d t
$$

$f(x)$ के सभी स्थिर बिन्दु ज्ञात कीजिए तथा इनमें से प्रत्येक को स्थानीय उच्विष्ठ, स्थानीय निम्निष्ठ या इसमें से कोई नहीं के तौर पर वर्गीकृत कीजिए।
6. Answer all the questions
(A) Find the area of the region bounded vertically by

$$
\begin{aligned}
& y=x^{2} \text { and } y=6+x \text { and bounded horizontally by } \\
& x=0 \text { and } x=5 .
\end{aligned}
$$

(B) Consider the two-sector model :

$$
\begin{aligned}
& \mathrm{Y}_{t}=\mathrm{C}_{t}+\mathrm{I}_{t} \\
& \mathrm{C}_{t}=0.75 \mathrm{Y}_{t-1}+400 \\
& \mathrm{I}_{t}=200
\end{aligned}
$$

(i) Find the difference equation in Y_{t} generated by this model.
(ii) Solve the difference equation for $\cdot Y_{t}$ and determine whether the solution path of Y_{t} is convergent or divergent.
(iii) Find the value of C_{2} given that $\mathrm{Y}_{0}=4,000$.

सभी प्रश्नों के उत्तर दीजिए :
(A) क्षेत्रफल के क्षेत्र ज्ञात कीजिए जो $y=x^{2}$ एवं $y=6+x$ द्वारा ऊध्र्वाधर परिसीमित एवं $x=0$ एवं $x=5$ द्वारा समानान्तर परिसीमित है।
(B) निम्नलिखित द्विक्षेत्र मॉडल पर विचार कीजिए :

$$
\begin{aligned}
& \mathrm{Y}_{t}=\mathrm{C}_{t}+\mathrm{I}_{t} \\
& \mathrm{C}_{t}=0.75 \mathrm{Y}_{t-1}+400
\end{aligned}
$$

$$
I_{t}=200
$$

(i) इस मॉडल द्वारा Y_{t} में जनित अन्तर समीकरण ज्ञात कीजिए।
(ii) इस अन्तर समीकरण को Y_{t} हेतु हल कीजिए तथा ज्ञात कीजिए कि Y_{t} का हल पथ (solution path) अभिसारी (convergent) है या अपसारी (divergent)।
(iii) C_{2} का मान ज्ञात कीजिए यदि यह दिया हुआ है कि $Y_{0}=4,000$ I

This question paper contains 19 printed pages]

Duration: $\mathbf{3}$ Hours

Maximum Marks: 75
(Write your Roll No. on the top immediately on receipt of this question paper.)
Note :- Answers may be written either in English or in Hindi; but the same medium should be used throughout the paper
टिप्पणी :-इस प्रश्न-पत्र का उत्तर अंग्रेजी या हिन्दी किसी एक भाषा में दीजिए; लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।

There are five questions in all.
All questions are compulsory.
A simple calculator can be used.
कुल पाँच प्रश्न हैं।
सभी प्रश्न अनिवार्य हैं
साधारण कैलकुलेटर का उपयोग किया जा सकता है।
P.T.O.

1. Answer any two of the following :
(A) Let $f(x)$ be a function with domain $[-2,3]$ and range $[0,8]$. What are the domains and ranges of the following functions ?
(i) $\quad-f(-x-1)$
(ii) $4 f^{-1}(-x)+1$.
(B) The given figure shows the graph of the function :

$$
y=g(x)=p x^{2}+q x+r
$$

(i) Check which of the constants p, q and r are

$$
>0,=0, \text { or }<0
$$

$$
y=g(x)=p x^{2}+q x+r
$$

(ii) The graph is symmetric about the line $x=k$. Find k.
(C) Determine the direction of logical conclusion $(P \rightarrow Q$ or $Q \rightarrow P$ or $P \leftrightarrow Q$) in case of the following propositions :
(i) P : The series $\sum_{n=1}^{\infty} a_{n}$ is convergent. $\mathrm{Q}: \lim _{n \rightarrow \infty} a_{n}=0$.
(ii) $\mathrm{P}: x^{2}>16$

$$
\mathrm{Q}: x>4
$$

निम्नलिखित में से किन्हीं दो के उत्तर दीजिए :
(A) मान लीजिए कि $f(x)$, परास (domain) $[-2,3]$ व परिसर (range) $[0,8]$ वाला एक फलन है। निम्नलिख्तित फलनों के क्या परास व परिसर हैं ?
(i) $\quad-f(-x-1)$
(ii) $\quad 4 f^{-1}(-x)+1$.
(B) निम्नलिखित चित्र फलन $y=g(x)=p x^{2}+q x+r$ का आरेख दर्शाता है :
(i) जाँच कीजिए कि स्थिरांकों p, q व r में से कौन-कौनसे $>0,=0$ व < 0 हैं।

$$
y=g(x)=p x^{2}+q x+r
$$

(ii) यह आरेख रेखा $x=k$ के प्रति सममित (symmetric) है। k का मान ज्ञात कीजिए।
(C) निम्नलिखित कथनों हेतु तार्किक निष्कर्ष (logical conclusion) की दिशा $(\mathrm{P} \rightarrow \mathrm{Q}$ या $\mathrm{Q} \rightarrow \mathrm{P}$. या $\mathrm{P} \leftrightarrow \mathrm{Q})$ ज्ञात कीजिए :
(i) P : श्रेणी $\sum_{n=1}^{\infty} a_{n}$ अभिसारी (convergent) है। $\mathrm{Q}: \lim _{n \rightarrow \infty} a_{n}=0$.
(ii) $\mathrm{P}: x^{2}>16$

$$
\mathrm{Q}: x>4
$$

2. Answer any three of the following: $3 \times 4=12$
(A) Find the equations of the tangent lines to the curve $y=\frac{x-1}{x+1}$ parallel to the line $x-2 y=2$.
(B) Find the asymptotes of the following functions :
(i) $y=e^{\frac{1}{1+x}}$
(ii) $y=\frac{\sqrt{1+x^{2}}}{x-1}$.
(C) (i) Evaluate the following limit $\lim _{x \rightarrow 0} \frac{e^{x+1}-e^{x-1}}{x^{2}}$.
(i) Consider the infinite series $1+\left(\frac{2 x}{3}\right)+\left(\frac{2 x}{3}\right)^{2}+\left(\frac{2 x}{3}\right)^{3}+\ldots$. For what values of x does the series converge ? Find the sum of the series if $x=1.2$.
(D) Approximate the function $f(x)=x^{1 / 3}$ by a Taylor polynomial of degree 2 at $x_{0}=8$. Use it to find an approximate value of $9^{1 / 3}$. Find an upper bound for the error of approximation corresponding to the result obtained.

निम्नलिखित में से किन्हीं तीन के उत्तर दीजिए :
(A) वक्र $y=\frac{x-1}{x+1}$ की रेखा $x-2 y=2$ के समानान्तर (parallel) स्पर्श रेखाओं (tangents) के समीकरण ज्ञात कीजिए।
(B) निम्नलिखित फलनों की अनन्तस्पर्शियाँ (asymptotes) ज्ञात कीजिए :
(i) $y=e^{\frac{1}{1+x}}$
(ii) $y=\frac{\sqrt{1+x^{2}}}{x-1}$.
(C) (i) सीमा $\lim _{x \rightarrow 0} \frac{e^{x+1}-e^{x-1}}{x^{2}}$ का मान ज्ञात कीजिए।
(ii) अनन्त श्रेणी $1+\left(\frac{2 x}{3}\right)+\left(\frac{2 x}{3}\right)^{2}+\left(\frac{2 x}{3}\right)^{3}+\ldots$ पर विचार कीजिए। x के किन मानों हेतु यह श्रेणी अभिसृत (converge) होती है ? यदि $x=1.2$ हो तो श्रेणी का योगफल ज्ञात कीजिए।
(D) फलन $f(x)=x^{1 / 3}$ को $x_{0}=8$ पर कोटि (degree) 2 के टेलर बहुपद (Taylor polynomial) से सन्निकटित (approximate) कीजिए। इसकी सहायता से $9^{1 / 3}$ का सन्निकट मान (approximate value) ज्ञात कीजिए। प्राप्त परिणाम के संगत सन्निकटन त्रुटि (error of approximation) हेतु ऊपरी सीमा (upper bond) ज्ञात कीजिए।
3. Answer any four of the following:
$4 \times 5=20$
(A) Graph the function $g(x)$ and check its continuity at $x=1$ and $x=-1$.

$$
g(x)= \begin{cases}2 x-1 & \text { if } x<-1 \\ x^{2}+1 & \text { if }-1 \leq x \leq 1 \\ x+1 & \text { if } x>1\end{cases}
$$

(B) (i) If $y \sqrt{x^{2}+1}=\log \left(x+\sqrt{x^{2}+1}\right)$ show that:
(a) $\left(x^{2}+1\right) \frac{d y}{d x}+x y-1=0$
(b) $\left(x^{2}+1\right) \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+y=0$
(ii) Find the point(s) of inflection of the function $f(x)=x e^{-x}$.
(C). (i) Let f be twice differentiable on $[0,2]$, show that if $f(0)=0, f(1)=2, f(2)=4$, then there is an $x_{0} \in(0,2)$ such that $f^{\prime \prime}(x)=0$.
(ii) Graph the function $y=\left|x^{2}-1\right|$.
(D) (i) Find the expression for elasticity of $h(x)=f(x)^{g(x)}$ in terms of E_{f} and E_{g}, the elasticities of $f(x)$ and $g(x)$ w.r.t x respectively.
(ii) Prove that $f(x)=e^{\sqrt{x}}-3$ has a unique solution in the interval $(1,4)$.
(E) (a) Suppose that the interest rate ' r ' such that the present value of receiving Rs. A_{2} in t_{2} years from now is the same as receiving Rs. A_{1} in t_{1} years from now, given that $t_{2}>t_{1}$. Assuming interest is compounded annually :
(i) Show that $\mathrm{A}_{2}>\mathrm{A}_{1}$
(ii) Show that the present value of receiving Rs. $A_{2},\left(t_{2}+k\right)$ years from now is equal to the present value of receiving Rs. $\mathrm{A}_{1},\left(t_{1}+k\right)$ years from now.
(b) The equation $3 x e^{x y^{2}}-2 y=3 x^{2}+y^{2}$ defines y as a differentiable function of x about the point $(x, y)=(1,0)$. What is the linear approximation to y about x ?

निम्नलिखित में से किन्हीं चार के उत्तर दीजिए :
(A) फलन $g(x)$ का.आरेख बनाइए तथा इसकी $x=1$
$x=-1$ पर सांतत्य (continuity) हेतु जाँच कीजिए :

$$
g(x)=\left\{\begin{array}{l}
2 x-1 \text { if } x<-1 \\
x^{2}+1 \text { if }-1 \leq x \leq 1 \\
x+1 \text { if } x>1
\end{array} .\right.
$$

(B) (i) यदि $y \sqrt{x^{2}+1}=\log \left(x+\sqrt{x^{2}+1}\right)$, हो, तो दर्शाइए कि:
(a) $\left(x^{2}+1\right) \frac{d y}{d x}+x y-1=0$
(b) $\left(x^{2}+1\right) \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+y=0$
(ii) फलऩ $f(x)=x e^{-x}$. के मोड़ बिन्दुओं (points of inflection) को ज्ञात कीजिए।
(C) (i) मान लीजिए कि $f[0,2]$ पर दो बार अवकलनीय (differentiable) है। दर्शाइए कि यदि $f(0)=0$, $f(1)=2, f(2)=4$, तो एक ऐसा $x_{0} \in(0,2)$ है जिसके लिए $f^{\prime \prime}(x)=0$ ।
(ii) फलन $y=\left|x^{2}-1\right|$ का आरेंख बनाइए।
(D) (i) $h(x)=f(x)^{g(x)}$ की लोच (elasticity) हेतु $f(x)$ व $g(x)$ की x के सापेक्ष लोचों, क्रमशः E_{f} व E_{g}, के पदों में व्यंजक व्युत्पन्न कीजिए।
(ii) सिद्ध कीजिए कि $f(x)=e^{\sqrt{x}}-3$ का अन्तराल $(1,4)$ में एक अद्वितीय (unique) हल है।
(E) (a) मान लीजिए कि ' r ' वह ब्याज दर है जिस पर अब से t_{2} वर्षों में प्राप्त होने वाली A_{2} रु. की राशि का वर्तमान मूल्य (present value) अब से ${ }_{1}{ }_{1}$ वर्षों में प्राप्त होने वाली A_{1} रु. की राशि के वर्तमान मूल्य के बराबर है, जहाँ $t_{2}>t_{1}$ यह मानते हुए कि ब्याज में वार्षिक चक्रवृद्धि (Compounded annually) होती है :
(i) दर्शाइए कि $A_{2}>A_{1}$
(ii) दर्शाइए कि अब से $\left(t_{2}+k\right)$ वर्षों में प्राप्त होने वाले A_{2} रु. का वर्तमान मूल्य अब से $\left(t_{1}+k\right)$ वर्षों में प्राप्त होने वाले A_{1} रु. के वर्तमान मूल्य के बराबर होगा।
(11)
(b) समीकरण $3 x e^{x y^{2}}-2 y=3 x^{2}+y^{2}, y$ को बिन्दु $(x, y)=(1,0)$ के आस-पास x के अवकलनीय फलन के रूप में परिभाषित करता है। y का x के आस-पास रेखीय सन्निकटन (linear approximation) क्या है ?
4. Answer any two of the following :
$2 \times 7.5=15$
(A) (i) For $f(x)=3 x(x+4)^{2 / 3}$ find the global extreme points on the interval $[-5,-1]$
(ii) If f is a one-to-one twice differentiable function with inverse g, show that $g^{\prime \prime}(x)=-\frac{f^{\prime \prime}(g(x))}{\left(f^{\prime}(g(x))^{3}\right.}$ Show that if f is increasing and concave its inverse is convex.
(B) (i) Show that the function $f(x)=a x^{2}+b x+c$ is concave if $a \leq 0$ and convex if $a \geq 0$ without using derivatives.
(ii) Let $f(x)=\frac{e^{2 x}}{4+e^{3 x}}$. Find the intervals on which the function is increasing and/or decreasing.
(C) (i) The curve C_{1} passes through the origin in the $x-y$ plane and its gradient is given by $\frac{d y}{d x}=x\left(1-x^{2}\right) e^{-x^{2}}$. Find its stationary points and classify them as maximum or minimum points.
(ii) A coin and stamp dealer estimates that the value of $\mathrm{V}(t)$ of his collection (in lakhs of rupees) increases over time according to the following: function $\mathrm{V}(t)=1000 e^{\sqrt{\frac{1}{4}}}$. If rate of interest is 8% compounded annually, find optimal time t^{*} for the coin and stamp dealer to sell his collection such that the present value of the collection is maximised (second order condition for optimum need not be verified). How does a change in the discount rate change the optimal time t^{*} ?

निम्नलिखित में से किन्हीं दो के उत्तर दीजिए :
(A) (i) $f(x)=3 x(x+4)^{2 / 3}$ हेतु अन्तराल $[-5,-1]$ में वैध्विक (global) चरम बिन्दु (extreme points) ज्ञात कीजिए।
(ii) यदि f एक-से-एक (one-to-one), दो बार अवकलनीय फलन है जिसका प्रतिलोम (inverse) g है, तो दर्शाइए कि $g^{\prime \prime}(x)=-\frac{f^{\prime \prime}(g(x))}{\left(f^{\prime}(g(x))^{3}\right.}$ । दशाईए कि यदि f वर्द्धमान (increasing) तथा अवतल (concave) है तो इसका प्रतिलोम उत्तल (convex) है।
(B) (i) बिना अवकलजों की सहायता के दर्शाइए कि फलन $f(x)=a x^{2}+b x+c$ अवतल है यदि $a \leq 0$ तथा उत्तल है यदि $a \geq 0$.
(ii) मान लीजिए कि $f(x)=\frac{e^{2 x}}{4+e^{3 x}}$ । वे अन्तराल ज्ञात कीजिए जिनमें यह फलन वर्द्धमान (increasing) तथा/अथवा ह्रसमान (decreasing) है।
(C) (i) वक्र $\mathrm{C}_{1} x-y$ समतल में मूल बिन्दु (origin) से गुजरता है तथा इसका ढाल (gradient) $\frac{d y}{d x}=x\left(1-x^{2}\right) e^{-x^{2}}$ है।

इसके स्थिर बिन्दुओं (stationary points) को ज्ञात कीजिए तथा उन्हे उच्चिष्ठ (maximum) या निम्निष्ठ (minimum) के रूप में वर्गीकृत कीजिए।
(ii)

सिक्कों व डाक टिकटों के एक व्यापारी का आकलन है कि उसके संग्रह का मूल्य $\mathrm{v}(\mathrm{t})$ (लाख रुपयों में) समय के साथ फलन $\mathrm{V}(t)=1000 e^{\sqrt{\frac{1}{4}}}$ के अनुसार बढ़ता है। यदि ब्याज दर 8% है, वार्षिक चक्रवृद्धि के साथ, तो इस व्यापारी के लिए अपने संग्रह को बेचने का इष्टतम (optimal) समय r^{*} ज्ञात कीजिए जिस पर इसके संग्रह का वर्तमान मूल्य अधिकतम हो (इष्टतम हेतु द्वितीय क्रम की शर्त को सत्यापित करने की आवश्यकता नहीं है)। बट्टे की दर (discount rate) में परिवर्तन इष्टतम समय t^{*} को किस प्रकार परिवर्तित करता है ?
5. Answer any four of the following : $4 \times 5=20$
(A) (i) Show that for any two $n \times n$ matrices A and $B, \operatorname{tr}(A B)=\operatorname{tr}(B A)$, where $\operatorname{tr}(A)$ denotes the trace of a $n \times n$ matrix A.
(ii) Find the rank of the following matrix for all values of the parameter λ :

$$
\left(\begin{array}{ccc}
1 & 2 & 4 \\
3 & 5 & 7-\lambda \\
2 & \lambda & -6
\end{array}\right)
$$

(B) (i) Solve the following system of equations

$$
\begin{aligned}
& X-Y+Z=0 \\
& X+2 Y-Z=0 \\
& 2 X+Y+3 Z=0
\end{aligned}
$$

(ii) What are degrees of freedom ? Determine the number of degrees of freedom of the above system of equations.
(C) Given that $\{u, v, w\}$ is a linearly independent set of vectors in some vector space V, prove that
(i) the set $\{u, v\}$ is linearly independent.
(ii) the set $\{u, u+v\}$ is linearly independent.
(iii) the set $\{u+v, v+w\}$. is linearly independent.
(D) Consider the following system of equations :

$$
\begin{aligned}
& -m_{1} x+y=b_{1} \\
& -m_{2} x+y=b_{2}
\end{aligned}
$$

(i) Prove that if $m_{1} \neq m_{2}$, then the system of equations has exactly one solution. Find the solution.
(ii) Suppose that $m_{1}=m_{2}$. Then under what conditions will the system of equations be consistent ?
(E) (i) Let v be any vector of length 3. Let $A=(v, 2 v, 3 v)$ be the 3×3 matrix with columns $v, 2 v, 3 v$. Prove that A is singular.
(ii) Find equation of the line formed at intersections of the two planes :

$$
X-5 Y+3 Z=11 \text { and }-3 X+2 Y-2 Z=-7
$$

निम्नलिख्तित में से किन्हीं चार के उत्तर दीजिए :

(A) (i) दर्शाइए कि किन्हीं दो $n \times n$ मैट्रिक्स A व B हेतु $\operatorname{tr}(\mathrm{AB})=\operatorname{tr}(\mathrm{BA})$, जहाँ $\operatorname{tr}(\mathrm{A}), n \times n$ मैट्रिक्स A के ट्रेस (trace) को व्यक्त करता है।
(ii) प्राचल (parameter) λ के सभी मानों हेतु निम्नलिखित मैट्रिक्स की कोटि (rank) ज्ञात कीजिए :

$$
\left(\begin{array}{ccc}
1 & 2 & 4 \\
3 & 5 & 7-\lambda \\
2 & \lambda & -6
\end{array}\right)
$$

(B) (i). निम्नलिखित समीकरण निकाय (system of equations) को हल कीजिए :

$$
\begin{aligned}
& X-Y+Z=0 \\
& X+2 Y-Z=0 \\
& 2 X+Y+3 Z=0
\end{aligned}
$$

